-
论文链接:https://arxiv.org/pdf/2410.14251 -
代码主页:https://github.com/ShuoTang123/MATRIX-Gen
-
模拟人类的智能体:每个 AI 智能体根据匿名化的真实人类档案进行初始化,并由 LLM 生成其个性和人生目标。这些目标进一步分解为可执行的步骤,形成 AI 智能体的行动计划。例如,一个医学教授的生活目标可能包括传播科学知识,而其计划则包括进行研究、发表论文、进行讲座和组织教育项目。这些步骤指导 AI 智能体未来的行动,确保它们朝着目标努力并展现出有目的的行为。当出现新观察时,AI 智能体会根据其记忆和个性做出反应;在没有新观察的情况下,它们则遵循既定计划追求目标。
-
结构化的通信机制:受人类社会中同质性现象的启发,我们根据相似特征对 AI 智能体进行分组,以减少不必要的连接,从而提高模拟的可扩展性。在每组中,本研究引入一个集中调节器来管理组内和组间的沟通。这一设计促进了相似 AI 智能体之间的更多互动,同时仍允许长距离交流,丰富信息流并增强真实性。此外,这种结构化通信机制能够防止 AI 智能体接收到过多无关信息,确保模拟的有效性。
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END
暂无评论内容